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An integral method for calculation of  a turbulent f low in an axial gap between a rotating disk and  an 

axisymmetric casing is developed with account for  the small  f low through the gap, the variation o f  the gap 

width over the radius, and the interaction with outer flows. Limitations of  the mathematical  models  used by 

most  researchers and ways of  surmounting them are revealed. The method is confirmed by a comparison 

with known experimental data. The obtained computational integral parameters were used repeatedly to 

improve economy and reliability of  industrial pumps, turbines, and  compressors. 

Introduction. The study of a turbulent flow in axial gaps between a rotating disk and a casing is of 

theoretical and practical importance. The economy and reliability of a large class of rotary machines - pumps, 

turbines, compressors, centrifuges - are determined by the parameters of this flow in many respects. Therefore, 

this type of flow was studied in many works. The most complete review and analysis are presented in [ 1, 2 ]. 

However, for the most part, the basic relations are obtained without a detailed evaluation of the adopted 

assumptions and also without account for essential special features of real turbomachines: radial leakage, variation 

of the gap width over the radius. In what follows, the assumptions adopted in the derivation of the basic equations 

are analyzed in detail and more general relations are formulated as applied to calculation of the most important 

parameters of turbomachines. 
Basic Equations. For an analysis of an axisymmetric flow in an axial gap between a plane rotating disk 

and a casing (see Fig. 1) a cylindrical system of coordinates with the z axis coinciding with the axis of rotation and 

the origin of coordinates lying on the disk surface was used. In this case the equations of liquid motion can be 

presented in the following form (friction stresses in planes passing through the axis of rotation, which are consid- 

erably smaller for ordinary cases, are neglected): 
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Fig. 1. Basic dimensions and coordinate system of the computation model. 
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can be derived from formulas (2) and (4) using a familiar technique [2, 3, and others ]. It should be noted that a 

further simplification of Eq. (5), made in a number of papers [1-3 and others ], by factoring the mean value (v~o) 

outside the integral sign according to the mean-value theorem, is incorrect for most cases that are of interest in 

practice, due to the alternating profile at relatively low radial flow rates. Formal factoring of (v~o) outside the integral 

sign has led in some cases to "mean" values of this parameter that considerably exceed the physical value within 

the range from 0 to s and to erroneous results. That is why detailed information about the variation of the radial 

velocity in an axial gap rather than the integral value of the radial flow rate is required. 

The relation between the velocity field and the pressure variation can be obtained by subtracting the 

continuity equation (4) multiplied by Vr from relation (1) and replacing the two terms in the left-hand side by the 

identical expression 

_ 2 0 v z = 1 Op 1 dr r V r V~_ Vr - -  p Og 
r r ~'z -- P O-~ + - - - - "  (6) 

We integrate this equation over the width of the axial gap with account for the vanishing of the velocities on the 

boundaries: 

sf 2 O v z 1 Op rrs - fro 
+ dz  + "dr -~z d z  = "~ 0 ~ r  d z  (7) 

o o P 

We estimate the second term in the left-hand side of the equation. For this purpose we replace the function Vr 2 under 

the integral sign by its maximum value V2max within the integration range and obtain the following inequality: 

Vr -~z d z  < Vrmax - . (8) 
0 s 0 

We find the value ~r[ 0 for a power-law distribution of the radial component of the velocity (see below). If we 

eliminate the axial component of the velocity using the continuity equation, we can obtain the boundary value near 

the disk: 

j - z  + Or} v~ 
Vz = lim vz l i r a -7  lim l / m - I  1 

Vr 0 x-~O •r z-*O V r z-~0 z ;"r0-m 
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The value of the same ratio near the casing is estimated similarly. 

Thus, the right-hand side of relation (8) is equal to zero. Therefore, neglecting the variation in the pressure 

over the width of the axial gap, we can obtain the following equation for the relation between the pressure and the 

velocity field: 

+ d z -  
o 

1 d ( p s )  ~rs --  f ro  

P dr P 
(1o) 

This equation can also be obtained in direct consideration of the balance of forces for an annular element. In the 

majority of works the last term in the right-hand side is neglected. This is admissible for relatively low radial flow 

rates through the axial gap, which are the most interesting in practice, but not in the general case. The left-hand 

side of relation (8) can be represented using the continuity equation (4) and the condition of zero velocities on the 

walls: 

f v  r -  dz = ~ I 0 22  O(pr~z ) 1 0 2:2 

0 Oz 0 Or r 2 Or 0 
(11) 

Hence, allowing for the previous result, we obtain the following equation for determining the radial component of 

the velocity : 

2 r2 d = O.  
r Or 0 

(12) 

It is close in form to the equality obtained directly from the continuity equation (4): 

rl ( Or ) r v ,d z  = O .  
0 

(la) 

As a result of integration of the latter relation we obtain an expression for determining the flow rate through the 

axial gap that will be used below: 

$ 
g = 2~r f vrdz p . (14) 

0 

Solution of the Equations and Determination of the Integral Parameters. Equations (5), (10), (12) are 

transformed to the following dimensionless form, with the parameters on the outer diameter of the disk or the axial 

gap being used as scales for leakage directed toward the axis of rotation, and the parameters on the inner diameter 

of the axial gap being used as scales for leakage away from the axis of rotation. The width of the axial gap varying 

over the radius serves as the scale of the axial coordinate: 

(~ dinS])~dZ=O, 
 z+0R o v" 0 5 )  

O-R o dR ) o  s ' 
(16) 

d ~ + ~  
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At a constant width of the axial gap (S -- const) the relations are simplified due to elimination of terms with factors 

involving logarithms. For the solution of Eqs. (15) and (16) sets of one-parameter  distributions of the radial and 

circumferential components of the velocities formed by superposition of symmelric (transit) and skew-symmetric 

(shear) profiles of velocity were used. They also satisfy the conditions of liquid sticking to the wall, the power (with 

the exponent varying over the radius) law of velocity distribution directly near  solid surfaces, and Eq. (14): 

I 
V r = aZ l / m  (1 - Z) l / m  u20RZ - -~ u20 R + 

o ) 
c t R B  1 +  1 1 +  

m t 

(18) 

V~, = u:~)R (1 - Z l / m )  + k Z  l / m  (1 - Z) l / ' n  (19) 

These distributions are particular cases of more general relations of [4 ] that are also valid for a rotating casing. 
When Z --, 0, the profiles of the radial and relative circumferential components of the velocities and  the profiles of 

the full relative velocities tend to the following power form: 

v =z,-o I (o 
c t R B  1 +  1 1 +  

m '  

"~1 = z~/m e'°'' (20) 

W ~  = V~ -- u20R = - Z l / m  (II20R - k )  = z l / m w ~ o o ,  (21) 

(22) 

Similar relations can be obtained for Z -* 1. To determine boundary friction stresses we use the Al ' tshul '  formula 

[5 ] for the coefficient of fluid friction, confirmed by familiar experiments on flows in tubes and boundary layers: 

,l = (1.8 log (Re l 7))  - 2  , (23) 

where Re = 2s (w) /v ,  

1 z l / m d Z -  mWov2 (24) 
(w)= v2 f Wo , .+1 

o 

is the mean-flow-rate velocity corresponding to a power profile. In the same paper an  equation for the relation 

between the exponent of the profile and  the coefficient of fluid friction is given: 

1.28  
m = - -  1. (25) 

These relations allow one to determine the dimensionless friction stresses on the disk surface, corresponding to the 

limiting velocity profiles, and their projections, proportional to the corresponding velocity components: 

1̀ Vro ` 1 ( m )  2 
Tr0=8(W)2 W0- 8 ~ VrOWO' (26) 

T~o=~ ~ W~oWo. (27) 
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Similar relations can be obtained for the friction stresses on the casing (when Z --- 1). Substituting expression (18) 
in equality (16), we can derive an equation for the distribution of the parameter a and, consequently, of the radial 

component of the velocity in the axial gap: 

= - -  2 _ 3  2 _ 2  [. 1 " 
d R  R d R  a R u 2 o m B  ]1 + 1 + 

As a result of solving this equation we can obtain the distribution of the parameter a: 

(28) 

a= -7 , 1) _ l .  
a u 2 o m ~  1 + - -  1 + 

m ~ 

The dependence is substantially simplified at S -- const: 

a2 (30) 

Substituting expressions (18), (19), (27) and a similar dependence for the friction stress on the casing into (16), 

we can obtain a differential equation for the distribution of the parameter k of the circumferential component of 

the velocity: 

d k  

d R  = 
+ 

x 2a 1 + ~  + 2n3 2 B 2 1 
a t~ u 2 o m  1 + - -  1 + 

m '  

( l) ( B 1 +  1 1 +  B 1 +  1 1 +  
m' m'  k 

B 1 + - - 1 +  B 1 1 +  
m ~ /91 ~ 

At S = const the equation is considerably simplified: 

>(  

(31) 

+ 

B ( 1 +  1 1 +  1 )  - B  ( 1 +  1-- l + m  2--) 
- 2 u ~  m '  m '  k (32) 

The boundary values of a and k at R = 1, necessary for the solution of the equations, are determined by outer 

flows with respect to the axial gap. Unfortunately, measurements of velocity profiles in the region of conjugation 
of the flow in the axial gap with outer flows of real turbomachines are virtually absent. Therefore, boundary values 
of the parameters were evaluated approximately or by results of comparison of experimental and calculated 
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distributions of pressure. The latter technique was used to obtain an empirical estimate of the parameter a of the 

boundary profile of the radial component of the velocity in leakage through the axial gap directed toward the axis: 

a 2 = - 0.1. (33) 

The boundary value of k of the profile of the circumferential component of the velocity with leakage directed toward 

the axis of rotation can be found approximately from the equation of momentum conservation in transformation of 

the near-wall power profile of the circumferential flow at the outlet from the working wheel in an infinitely thin 

layer to the profile (19): 

1 z)l/m zl/m Z)l/,,, ( 1 
f V u ( 1  - a 2 (1 - u20 Z - - ~ u 2 0 +  
0 

G ) d Z  = 

/ 
l 

= f [u20 (l - z l /m) + k2zl/m (l - z)l /m] a2zl/m (l - z ) l /m × 

( ' (o 
X //20 z --  "~ U20 + 1, 

a2B 1 + - -  1 +  /'n 

From the latter equation we determine the boundary value of the parameter k2: 

(34) 

2G (3 + 2 m )  
+ 

+ B  1 + - -  1 +  1 +  Vu - B  1 + - -  1 +  //'1~ / ' tl '  
(as) 

Similarly, for the flow from the axis of rotation, issuing from the slit sealing of the shaft to the axial gap, the 

circumferential velocity of whose surface is u e, we can find approximate values of the boundary parameters: 

a e = - 0 . 4 ,  ( 36 )  

k e = R e . (37) 

Thus, using Eqs. (29) and (31) and the values of the parameters on the boundary of the axial gap between 

the rotating disk and the casing, at the given leakage we calculate the distributions of the radial and circumferential 

components of the liquid velocity. Integrating Eq. (17), we can obtain a formula for calculating the pressure 

distribution in the axial gap from the known velocity field: 

, s (  ) 1 
0 R 

In most cases of relatively small leakage the last term can be neglected. Assigning a number of values of 

the leakage, we can find the corresponding pressure drops in the axial gap. The obtained hydraulic characteristic 

of the axial gap makes it possible to considerably refine losses to leakage in a turbomachine. Then, such important 
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Fig. 2. Distribution of the radial component of the velocity (curves, calculation 

at  S = 0 . 0 3 ,  m -- 7; points, experiment  at R = 0 . 7 - 1 ;  S = 0 . 0 3 - 0 . 0 4 ;  R e = 

0 . 1 - 0 . 2 ) :  1) Gn = 0.137 16]; 2) 0.0893 [6]; 3) 0.035 I7]; 4) 0.029 [7]; 5) 

0.0207 [71; 6) 0.015 [81. 
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Fig. 3. Distribution of the circumferential component of the velocity (curves, 

calculat ion at S = 0 .03 ,  m = 7; points ,  expe r imen t  at  R = 0 . 7 - I ;  S = 

0 .02-0 .04 ;  Re = 0 .1 -0 .2 ) :  1) GR = 0.137 [61; 2) 0.0893 [6]; 3) 0".044 [8]; 

4) 0.022 [81. 

integral parameters  for  turbomachines as the axial force acting on the disks and  greatly affecting the reliabili ty of 

the operation of the turbomachine supports 

r 2 
A = Z7r f prdr  (39) 

r e 

and power losses to disk friction 

5 3 (40)  
N = Cfd pr2os 

are determined.  In the latter expression the coefficient of the moment of disk resistance is calculated from the 

known velocity field using dependence (27): 
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Fig. 4. Pressure distribution in leakage from the axis of rotation (curves, 

calculation at S = 0.016-0.15; Re = 0.1-0.25; points, experiment): 1) GR = 

0.001 [81; 2) 0.0015 [8 ]; 3) 0.002 [8 ]; 4) 0.003 [81; 5) 0.0041 [8 ]; 6) 0.0044 

[9]; 7) 0.0133 [9]; 8) 0.019 [6]; 9) 0.022 [9]; 10) 0.075 [61; 11) 0.075 [10]; 

12) 0.166 [10]; 13) 0.175 [6]; 14) 0.21 [10]; 15) 0.22 [6]. 

R2 

z~ I, r~2aR Cfd - -  2 3 
u ~ 2  

(41) 

It should be noted that for low-speed turbomachines with relatively narrow working channels these losses comprise 

an important part of all losses. 
Comparison of Calculations with Experiments and Analysis of the Results. A computer program for a 

numerical solution of the differential equation and calculation of the integral parameters was developed on the basis 

of the relations derived. The results of calculations were compared with experimental data obtained in studies of, 

unfortunately, only an axial gap with a constant width. Figures 2 and 3 show good agreement of experimental and 

calculated profiles of the radial and circumferential components of the velocities for leakage from the axis, which, 

for convenience of comparison, are reduced to parameters different from those used in the computational technique. 

The alternating character of the profile of the radial component of the velocity in small leakages and its levelling 

in large leakages are typical. Measurements of the static pressure exerted on the wall of the axial gap are more 

numerous and reliable. Figure 4 shows calculated and experimental pressure distributions in leakage from the axis 

of rotation. As the leakage increases, the pressure curve first straightens due to transfer of weakly twisted liquid 

from the axis to the periphery and a general decrease in the level of the velocities in the axial gap (curves 7, 8, 9). 

However, with a further increase in the leakage the effect of the circumferential component of the velocity decreases 

and a flow with an elevated pressure, similar to that in a plane radial diverging segment, is realized near the axis. 

This leads to an alteration of the sign of the curvature of the pressure curve (curves 4, 5, 6). Then this flow covers 

the entire axial gap (curves 12, 13, 14, 15). It should be noted that the best convergence of the calculation and the 

experiment corresponded to an initial value of the parameter a -- -0.4.  

With a radial leakage directed toward the axis of rotation (Fig. 5 for relatively wide axial gaps, Fig. 6 for 

narrow axial gaps) in both experiments and calculations, which are in a good agreement with them, the decrease 

in pressure becomes stronger with increase in leakage (in absolute value). This occurs due to transfer of twisted 

liquid to the axis and an increase in the circumferential component of the velocity, as in the flow near a vortex 

sink. It should be noted that the curvature of the pressure curve has a different sign compared to the parabolic 
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Fig. 5. Pressure distribution in leakage toward the axis of rotation in wide 

axial  gaps (curves, calculation at  S = 0 . 0 5 - 0 . 0 7 ;  R e = 0.3; poin ts ,  

experiment): 1) GR = --0.012 and S = 0.05 [11 ]; 2) -0.0095 and 0.07 [12 ]; 

3) -0.0095 and 0.07 [3 ]; 4) -0.0068 and 0.07 [12 ]; 5) -0.0068 and 0.07 

[3]; 6) - 0 . 0 0 5 5  and 0.05 [11 ]; 7) -0.0048 and 0.07 [12]; 8) -0.0048 and 
0.07 [3]; 9) -0.0011 and 0.06 [13]. 

Fig. 6. Pressure distribution in leakage toward the axis of rotation in narrow 

axial gaps (curves, calculation at S = 0.0173, R e = 0.3; points, experiment): 

1) GR "= --0.0381 [12]; 2) --0.0381 [4]; 3) --0.0272 [12]; 4) --0.0272 [4]; 
5) --0.0167 [12]; 6) --0.0167 [4]. 

curve corresponding to liquid rotation according to the law of a solid body in the absence of leakage. Calculations 

and experiments showed that for any direction of leakage that has a large absolute value, the effect of the leakage 

decreases with increase in the width of the axial gap due to a decrease in the radial component of the velocity. 

Conclusion. The integral method suggested for calculation of a turbulent flow in the axial gap between a 

rotating disk and a casing allows one to improve the accuracy of calculations and to take into account the most 

important special features of real machines: the values of leakage through the axial gap, variations of the axial gap 

width over the radius, effects of boundary flows. The developed interactive program complex, the main part of 

which was developed on the basis of this method, considerably increased the accuracy of calculations of axial forces 

affecting the rotor, leakages and associated volumetric losses, and losses to disk friction in the main types of 

centrifugal pumps. The method developed can be used for calculation of axial forces acting on disks of turbines 

and cooling systems and disk losses in turbines and centrifuges. The method can be generalized to flows between 

a rough rotating disk and a casing and to a compressible-fluid flow. 

NOTATION 

A ,  axial force acting on the disk; a, parameter of the profile of the radial component of the liquid velocity; 

B(..., ...), beta-function; cfd, coefficient of disk friction; g, radial mass flow rate through the axial gap; G = 

g/(2~rpr2s2v2) ,  GR = g/ (2~rpr2s2to) ,  dimensionless radial flow rates; R -- r / r 2 ,  relative radius; k, parameter of the 

profile of the circumferential velocity of the liquid; l / m ,  exponent of the power distribution of the velocity; N, 

power losses to disk friction; P = p / ( p v ~ ,  dimensionless pressure; p, pressure; Re, Reynolds number; s, axial 

distance between the disk and the casing; S -- s / r 2 ,  dimensionless axial distance; U, mean radial velocity in the 

cross section of the axial gap; u20, dimensionless circumferential velocity on the outer diameter of the disk; v, 

absolute velocity of the liquid; V = v / v 2 ,  dimensionless absolute velocity; v2 = (U 2 + (0.5cor2)2) i/z, velocity scale; 

w, relative velocity of the liquid; W = w / w 2 ,  dimensionless relative velocity of the liquid; z, axial distance reckoned 

from the disk; Z = z / s ,  dimensionless axial distance; ~, coefficient of hydraulic friction, p, liquid density; r, friction 

stress; T, dimensionless friction stress between the liquid and a solid surface; co, angular velocity of the disk; Ap 

= (P2 - P) / (pw2r22) ,  dimensionless pressure drop. Subscripts: 0, on the disk surface; max, maximum value; r, radial 
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component; s, on the casing surface; u, outer flow with respect to the axial gap; z, axial component; ~o, 
circumferential component; 2, outer or initial radius of the axial gap; e, inner radius of the axial gap; ( ) ,  mean- 
flow-rate value. 
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